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Abstract 

Background: With more than 20 million residents, Mexico City Metropolitan Area (MCMA) has the 
largest number of Covid-19 cases in Mexico and is at risk of exceeding its hospital capacity in late 
December 2020.  

Methods: We used SC-COSMO, a dynamic compartmental Covid-19 model, to evaluate scenarios 
considering combinations of increased contacts during the holiday season, intensification of social 
distancing, and school reopening. Model parameters were derived from primary data from MCMA, 
published literature, and calibrated to time-series of incident confirmed cases, deaths, and hospital 
occupancy. Outcomes included projected confirmed cases and deaths, hospital demand, and 
magnitude of hospital capacity exceedance. 

Findings: Following high levels of holiday contacts even with no in-person schooling, we predict that 
MCMA will have 1·0 million (95% prediction interval 0·5 – 1·7) additional Covid-19 cases between 
December 7, 2020 and March 7, 2021 and that hospitalizations will peak at 35,000 (14,700 – 67,500) 
on January 27, 2021, with a >99% chance of exceeding Covid-19-specific capacity (9,667 beds). If 
holiday contacts can be controlled, MCMA can reopen in-person schools provided social distancing is 
increased with 0·5 million (0·2 – 1·0) additional cases and hospitalizations peaking at 14,900 (5,600 – 
32,000) on January 23, 2021 (77% chance of exceedance). 

Interpretation: MCMA must substantially increase Covid-19 hospital capacity under all scenarios 
considered. MCMA’s ability to reopen schools in mid-January 2021 depends on sustaining social 
distancing and that contacts during the end-of-year holiday were well controlled. 

Funding: Society for Medical Decision Making, Gordon and Betty Moore Foundation, and Wadhwani 
Institute for Artificial Intelligence Foundation. 
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Research in context 

Evidence before this study 

As of mid-December 2020, Mexico has the twelfth highest incidence of confirmed cases of Covid-19 
worldwide and its epidemic is currently growing. Mexico’s case fatality ratio (CFR) – 9·1% – is the 
second highest in the world. With more than 20 million residents, Mexico City Metropolitan Area 
(MCMA) has the highest number and incidence rate of Covid-19 confirmed cases in Mexico and a 
CFR of 8·1%. MCMA is nearing its current hospital capacity even as it faces the prospect of increased 
social contacts during the 2020 end-of-year holidays. There is limited Mexico-specific evidence 
available on epidemic, such as parameters governing time-dependent mortality, hospitalization and 
transmission. Literature searches required supplementation through primary data analysis and 
model calibration to support the first realistic model-based Covid-19 policy evaluation for Mexico, 
which makes this analysis relevant and timely. 

 

Added value of this study  

Study strengths include the use of detailed primary data provided by MCMA; the Bayesian model 
calibration to enable evaluation of projections and their uncertainty; and consideration of both 
epidemic and health system outcomes. The model projects that failure to limit social contacts during 
the end-of-year holidays will substantially accelerate MCMA’s epidemic (1·0 million (95% prediction 
interval 0·5 – 1·7) additional cases by early March 2021). Hospitalization demand could reach 35,000 
(14,700 – 67,500), with a >99% chance of exceeding current capacity (9,667 beds). Controlling social 
contacts during the holidays could enable MCMA to reopen in-person schooling without greatly 
exacerbating the epidemic provided social distancing in both schools and the community were 
maintained. Under all scenarios and policies, current hospital capacity appears insufficient, 
highlighting the need for rapid capacity expansion. 

 

Implications of all the available evidence  

MCMA officials should prioritize rapid hospital capacity expansion. MCMA’s ability to reopen schools 
in mid-January 2021 depends on sustaining social distancing and that contacts during the end-of-
year holiday were well controlled. 
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Introduction 
The Covid-19 global pandemic reached an estimated 72·9 million confirmed cases and caused 1·6 
million deaths by December 17, 2020, with recent incidence rising sharply in low- and middle-
income countries (LMICs), especially in Latin America.1 Older individuals and those with 
comorbidities have greater risks of serious health outcomes and death.2 Appropriate and timely 
hospitalization and in-hospital care can mitigate negative health outcomes.3 However, even in highly 
developed countries, rapidly rising case have overwhelmed health systems, reducing their 
effectiveness.4 Hence, governments in LMICs, like Mexico, are deeply concerned about how their 
less well-resourced healthcare systems will cope with surges in Covid-19 cases. 
 
In mid-December, Mexico had the twelfth highest numbers of confirmed Covid-19 cases worldwide, 
and the second largest number of Covid-19 deaths in Latin America.1 Mexico’s case fatality ratio 
(CFR) – 9·1% – is the second highest in the world.5 With a population of more than 20 million 
residents, Mexico City Metropolitan Area (MCMA) has the highest number and incidence rate of 
confirmed Covid-19 cases in Mexico and a CFR of 8·1%.6 
 
In the coming months , non-pharmaceutical interventions (NPIs) will remain the primary means of 
controlling the Covid-19 epidemic in LMICs, even as vaccines are scaled-up globally.7 However, 
because NPIs, especially business and school closures, can be highly disruptive to economic and 
social wellbeing particularly in settings where many households lack computers and internet 
connection,8 their strictness must be balanced against threats to a functioning healthcare system. 
Traditional end-of-year holiday festivities, in which many people gather and mix, present particular 
challenges for Mexico.9 
 
To inform Mexico’s decision makers given transmission risks posed by increased end-of-year holiday 
contacts and the possible health and healthcare impacts of epidemic growth in early 2021, we 
provide model-based assessments of policy alternatives. The assessments are informed by primary 
data analyses. In addition to epidemic outcomes, we focus on estimating the risk that MCMA’s 
hospital system will be saturated by early 2021, and the potential for policies and hospital capacity 
expansion to mitigate this. 
 
Methods  
 
Overview 
We implemented a model of MCMA’s Covid-19 epidemic and potential interventions using the 
Stanford-CIDE Coronavirus Simulation Model (SC-COSMO) framework (appendix pp 13—31). We 
parameterized the model based on the best-available clinical and epidemiological data from 
published and publicly available pre-published studies along with primary data on MCMA’s 
hospitalization and testing infrastructure. We calibrated the model to time-series data on MCMA’s 
daily confirmed Covid-19 cases, deaths, and hospital occupancy from February 24, 2020 to 
December 7, 2020. Model calibration determined the joint posterior uncertainty distribution of 
inputs. The calibrated model projected epidemic and health systems outcomes along with their 
uncertainty under a range of intervention scenarios from December 7, 2020 to March 7, 2021. 
Scenarios comprised varying combinations of increased contacts during the end-of-year holiday 
season followed by intensification of NPIs and re-opening of schools. 
 
Model structure and assumptions 
SC-COSMO is an age-structured, multi-compartment susceptible-exposed-infected-recovered (AS-
MC-SEIR) model of SARS-CoV-2 transmission and progression (Figure S8) with realistic demography 
and contact patterns (household and venue-specific, non-household contacts) enabling finer detail 
of the interventions considered.10 The model is implemented in the R programming language.11 SC-
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COSMO includes both latency and incubation, whose durations are assumed to be gamma 
distributed (appendix p 20). It incorporates the timing of NPIs (e.g., “social distancing”) and 
reductions of effective contacts which may differ by age and venue. Forward projections with the 
SC-COSMO model can compare future scenarios and consider a range of outcomes (e.g., infections, 
cases, deaths, hospitalizations). 
 
Scenarios and policies 
 
We used the model to evaluate a range of policies under two scenarios involving heightened levels 
of social contacts in MCMA during the end-of-year holiday period (December 24, 2020 through 
January 6, 2021) relative to the level of social contact on December 7, 2020, which is estimated 
through model calibration. Compared to the calibrated level of reductions in social distancing on 
December 7, our base case scenario assumes that with less compliance with NPIs, reductions in 
holiday contacts will be less effective (i.e., we add 0.30 to our calibrated multiplier). In an alternative 
scenario, we assume that December 7 levels are unchanged under the end-of-year holiday period.  
 
Under each holiday contact scenario, we considered the effect of four different disease control 
policies followed during the period from December 7, 2020 to March 7, 2021. Policies involved 
increased compliance with social distancing in the community and in-person school reopening. They 
included: 1) status quo in which social distancing observed on December 7 again resumes after the 
holidays with schools remaining closed; 2) increased compliance with community social distancing 
on January 11, 2021 with schools remaining closed; 3) status quo community social distancing with 
schools re-opening on January 11, 2021 with status quo in-school contacts; 4) increased compliance 
with community social distancing with schools re-opening both on January 11, 2021 with reduced in-
school contacts. 
 
Outcomes 
Our primary outcomes were time series of incident and cumulative Covid-19 cases, deaths, and 
hospitalization demand in relation to MCMA hospital capacity. We estimated the effective 
reproduction number, Re, for March 23, 2020 – the day Mexico implemented national-level NPIs – as 
well as for all days since then.12 We also estimated the likelihood of hospitalization demand 
exceeding Covid-19-specific capacity over time.  
 
Data and model inputs 
MCMA consists of Mexico City’s counties plus 60 counties of two neighboring Mexican states (Figure 
S1). The list of counties that form MCMA along with their projected 2020 population is shown in 
Table S1. Overall demographic data on MCMA including its age-structure and age-specific 
background mortality rates were derived from official statistics (Table 1).14 We collapsed ages into 
eight groups that reflected likely patterns of exposures (e.g., school age children, retirees, etc.). 
 
We compiled publicly available data from Mexico’s Ministry of Health on all detected cases and 
deaths in MCMA from February 24 through December 7, 2020.6 We used these data to compute 
daily incident and cumulative confirmed cases and deaths, and to estimate time-varying case fatality 
rates with proportional hazard models that included splines on calendar time. 

 
We received daily updates from MCMA’s Digital Agency for Public Innovation13 on hospital inpatient 
census of severe-acute respiratory infection (SARI) beds with and without ventilator occupancy, as 
well as current hospital capacity, which has expanded over time. We estimated time-varying hospital 
length of stay for Covid-19 patients, stratified by whether or not they required a ventilator via model 
calibration. 
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Literature reviews provided Covid-19-specific epidemiologic parameters. Latent and incubation 
periods were assumed to follow a gamma distribution (appendix p 20).15–17 Notably, the probability 
of hospitalization and death among cases are not derived from the literature; they are estimated 
from the primary data, as described above. 
 
Model calibration and uncertainty analysis 
We used Bayesian methods to calibrate 11 model parameters that could not be directly estimated 
from data. The parameters concerned transmissibility in the community and in the household, time-
varying effects of MCMA’s NPIs expressed as proportionate reduction of pre-epidemic levels of daily 
effective contacts, and time-varying rates of case detection. Calibration inferred values for model 
parameters by matching modeled outcomes to daily incident confirmed Covid-19 cases (i.e., 
calibration targets) from February 24 to December 7, 2020. Comparison of modeled outcomes and 
empirical data used a likelihood function, which we constructed by assuming that targets follow 
negative binomial distributions with means given by the model-predicted outputs and a dispersion 
equal to one, to account for potential overdispersion in the target data.18 We defined uniform prior 
distributions for all calibrated parameters with ranges based on existing evidence, epidemic theory, 
and plausibility (Table 2). Calibration resulted in an estimate of the joint posterior uncertainty 
distribution for the model parameters.  

 
To conduct the Bayesian calibration, we used the incremental mixture importance sampling (IMIS) 
algorithm,19 which has been previously used to calibrate health policy models.20 Briefly, we sampled 
10,000 parameter sets from our priors in the first stage followed by 1,000 samples in each of the 
consecutive 45 updated sampling stages. This procedure yielded a posterior distribution from which 
we obtained 1,000 samples used for our projections and analyses. The marginal posterior 
distributions and pairwise comparisons are shown in Figures S2 and S3.  
 
For all outcome measures, we accounted for model input parameter uncertainty by randomly 
sampling from the joint posterior distribution obtained from the Bayesian calibration. We used 1,000 
parameter sets sampled from the posterior distribution to generate all primary outcomes for all 
scenarios and policies with 95% posterior model-prediction intervals (PI) for each outcome from the 
2·5th and 97·5th percentiles of the projected values. 
 
Role of the funding source 
The funders had no role in study design, data collection, data analysis, data interpretation, writing of 
the article, or the decision to submit for publication. All authors had full access to all the data in the 
study and were responsible for the decision to submit the article for publication. 
 
Results 
 
MCMA’s epidemic to date 
The Covid-19 epidemic in MCMA has involved substantial burdens of cases, hospitalizations, and 
deaths, which the SC-COSMO model replicates (Figures 1 and 2). Case rates rose from mid-March 
through late May, remained high through mid-October, and have steadily increased since then 
(Figure 1). Trends in deaths and hospitalizations have followed the same general pattern. By 
December 7, 2020, MCMA had experienced 344,028 confirmed Covid-19 cases and 27,733 deaths 
(Table 1), which represent cumulative incident and mortality rates of 1,167 and 126 per 100,000 
population, respectively. Among confirmed cases, 68,225 (20%) involved hospitalizations and 12,458 
(18%) involved ventilator hospitalizations. Patients died in 29% of non-ventilator hospitalizations and 
80% of ventilator hospitalizations. The average length of stay in non-ventilator hospitalizations was 
13·29 days (standard deviation [SD] of 7·17); the average length of stay in ventilator hospitalizations 
was 13·89 days (SD of 13·17). 
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On March 17, 2020, Re for Covid-19 in MCMA was 2·23 (95% PI: 2·12 – 2·35) and decreased to 1·37 
(1·28 – 1·47) immediately after implementation of NPIs and was 1·10 (1·03 – 1·18) by December 7, 
2020 (Figure S4). This implies that given the estimated Re in the early phases of the epidemic and if 
pre-pandemic contact patterns had not changed early on, MCMA would have experienced a bigger 
Covid-19 epidemic than that observed.  
 
Effective contact rates were substantially decreased after MCMA’s NPIs were originally implemented 
but have subsequently increased. Specifically, the calibrated model estimated that effective contacts 
were 52% (95% PI: 39 – 61) lower than pre-pandemic levels in late March 2020 (Table 2 and Figures 
S2 and S3) but only 47% lower (40 - 54) in early December. Cumulatively, 7% (5 – 10) of the MCMA 
population – representing 1·5 million people (1·5 – 2.2) – had previously been infected by December 
7, 2020 (see Figure S5), 24% (15 - 32) of whom were detected as cases (see Figure S6). 
 
Contact patterns and epidemic risks during the end-of-year holidays 
 
The trajectory of MCMA’s epidemic from late December through mid-January 2021 depends heavily 
on the extent to which gatherings that traditionally take place in Mexico during the end-of-year 
holidays occur and cause effective contact rates to rise. Our base case assumption of increased 
contacts during the holidays projects a peak of 18,708 (95% PI 7,821 – 36,874) daily incident cases 
and 737 (308 – 1,450) deaths on mid-January 2021 (Figure 1). However, if compliance with social 
distancing reduces contacts compared to previous years in this holiday period, daily incident cases 
and deaths could have a lower peak at 8,420 (2,749 – 17,668) and 333 (109 – 696), respectively, on 
early-February 2021 (Figures 1).  
 
Demand for hospitalization is likely to exceed Covid-19-specific hospital capacity by early 2021, even 
if end-of-year holiday contacts are reduced, although these contacts will strongly determine the 
extent to which capacity is exceeded and the duration of exceedance. Peak demand on January 27, 
2021 is projected to be 35,000 (14,700 – 67,500) with high levels of holiday contacts and 16,711 
(5,494 – 34,372) on February 9, 2021 if holiday contacts are reduced (Figure 2); both far exceed 
MCMA’s current capacity of 9,667 hospital beds. The likelihood of exceeding hospital capacity by 
these dates is >99% with high levels of holiday contacts versus 80% with low levels of contacts 
(Figure 5). 
 
Policy analysis without social distancing compliance during the 2020 end-of-year holiday period 
 
NPI policies and compliance from mid-January through early March 2021 will play important roles in 
mitigating adverse health outcomes and the speed and extent to which hospitalization demands 
exceeds capacity. The following policy comparisons assume that with less compliance with NPIs, 
holiday contacts are only 17% (95% PI 9 – 24) lower than pre-pandemic levels. 
 
Social distancing: status quo; Schooling: not in-person 
If mid-December levels of contacts resume after the holidays and in-person schools remained closed 
(i.e., the status-quo), we estimate the following for March 7, 2021: 5,787 (95% PI 2,142 – 9,582) 
incident daily cases and 253 (105 – 418) incident daily deaths (Figure 3); Re of 0·84 (0·73 – 0·93), 
indicating a declining but still substantial epidemic (Figure S4); hospital demand of 15,794 (7,124 – 
24,908) (Figure 4), and a 90% likelihood of exceeding Covid-19-specific capacity (Figure 5). 
 
Social distancing: stricter; Schooling: not in-person  
However, if on January 10, 2021, social distancing was intensified relative to December 7 levels 
resulting in contacts being 59% (95% PI 54 – 64) lower than pre-pandemic levels, and in-person 
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schools remained closed, these outcomes would be substantially better. By March 7, we estimate 
1,584 (441 – 2,880) incident daily cases and 72 (22 – 128) incident daily deaths (Figure 3); Re of 0·78 
(0·67 – 0·86) (Figure S4); hospital demand at 5,147 (2,007 – 8,287) (Figure 4), with a <1% likelihood 
of exceeding capacity (Figure 5). 
 
In-person school reopening in early 2021 
Reopening in-person schooling is a high priority given the negative societal impacts of these 
closures. However, epidemic outcomes depend on how reopening is implemented and how much 
social distancing can be achieved both in schools and other community venues. 
 
Social distancing: status quo; Schooling: in-person 
Resumption of in-person schooling without reductions in contacts would result in appreciably 
greater epidemic growth. By March 7, incident daily cases and deaths would be 9,851 (3,406– 
16,330) and 428 (156 – 692) respectively (Figure 3); Re would be 0·84 (95% PI 0·72 – 0·95) (Figure 
S4); and hospital demand would be 25,908 (11,984 – 40,405) with the likelihood of exceeding 
capacity at >99% (Figures 4 and 5). 
 
Social distancing: stricter; Schooling: in-person 
However, if in-person school resumes with contacts reduced substantially below mid-December 
levels in both schools and the community, then epidemic and hospitalization outcomes would be 
slightly better than the status quo without school reopening. By March 7, incident daily cases and 
deaths would be 3,742 (95% PI 1,078 – 6,698) and 150 (92– 246) respectively (Figure 3); Re would be 
0·83 (95% PI 0·71 – 0·92) (Figure S4); hospitalization demand would be 10,593 (4,134 – 17,013) with 
the likelihood of exceeding capacity at 59% (Figures 4 and 5). 
 
Policy analysis with social distancing compliance during the 2020 end-of-year holiday period 
 
Results of the policy comparisons under a scenario that assumes there are not high levels of end-of-
year holiday contacts are consistent with those presented above for the base case. While our main 
health and hospital outcomes are generally less extreme owing to lower transmission in the period 
between December 24, 2020 and January 6, 2021, the rank ordering of policies by efficacy does not 
change (Figures 1-5 and S4). Importantly, if social distancing compliance were achieved during the 
end-of-year holiday period, in-person school reopening with appropriate social distancing would be 
feasible in mid-January 2021 without sparking substantial additional epidemic growth, although 
hospitalization capacity would be exceeded. Importantly, the only scenario in which Covid-19-
specific hospital capacity is not exceeded is under stricter community social distancing. 
 
Discussion  
For Mexico City Metropolitan Area’s population of 20 million people, we estimated the epidemic and 
hospital system effects of resuming in-person schooling in early 2021 and how these effects depend 
upon the level of end-of-year holiday contacts. Regardless of the level of social distancing MCMA 
residents are able to achieve during the holidays, hospital demand is very likely to exceed current 
capacity unless resources are quickly expanded. We found that high levels of end-of-year holiday 
contacts greatly exacerbate cases and deaths, with lasting effects through early March 2021, and 
that these effects could be substantially attenuated by greater social distancing during the end-of-
year holiday period. Without improved social distancing during the holidays, reopening in-person 
schools, even with augmented social distancing, results in appreciable epidemic growth. Thus, we 
conclude that the feasibility of re-opening in-person schooling in the new year depends on reducing 
mixing and social contacts during the holidays. 
 



 9 

While we find that MCMA is expected to exceed hospital capacity as cases continue to rise across 
scenarios and policies, the timing and magnitude of exceedance differs by scenario. Nonetheless, to 
meet the surge in hospital demand expected even under optimistic scenarios, MCMA may have to 
increase Covid-19-specific capacity by at least 4,500 beds. 
 
Reopening in-person schooling is a high priority, and our findings suggest that provided social 
distancing can be maintained both at schools and in the community, reopening may be possible 
without substantial additional impact to epidemic and health system outcomes. However, if social 
distancing cannot be complied with or enforced, school reopening could increase confirmed cases by 
410,000 compared to reopening with strict social distancing. Furthermore, we found that the extent 
of transmission during the end-of-year policies has an important effect on the feasibility of 
reopening schools without sparking additional epidemic growth, which is consistent with other 
findings.21 
 
Our results are in line with those from previous modeling studies of NPIs in general and compliance 
with social distancing in particular.3,22,23 Briefly, strengthening both has tremendous potential to 
reduce epidemic transmission, as does closure of in-person school. But these policies can be highly 
disruptive, trigger other economic and social costs, and are increasingly provoking backlashes among 
frustrated and weary communities throughout the world. Our findings underscore a theme evident 
in similar studies: policy decisions about reopening various venues and institutions are interrelated 
in their effects and must be considered as part of the trade-offs that include health, economic, and 
social outcomes.  
 
Our analysis has several limitations. First, while our model is stratified by age to account for 
differential mixing, it does not include differential transmission by younger people.24 Some studies 
find that younger children may transmit less than teens and adults.22,24 If children are differentially 
less likely to transmit then, at least for primary schools, our results may understate the possibility of 
resuming in-person schooling with social distancing without exacerbating the epidemic and could be 
viewed as conservative. Second, our analysis does not account for vaccination. However, the time 
periods we focus on precede plausible mass vaccination, given current expectations regarding 
vaccine roll-out in Mexico.25 Third, we purposefully focus on the health and health systems impacts 
of policy alternatives needed in the short-term and do not conduct a cost-effectiveness analysis 
(CEA) over a lifetime horizon. Hence, we do not quantify the full costs and health outcomes 
associated with missing school26 or work.27 Findings from our analysis will be useful inputs for a 
wider economic evaluation of policy alternatives in future research. 
 
Our study has several strengths. First, we use the SC-COSMO model, which is a dynamic transmission 
model that accounts for realistic contact patterns based on adjusted population density28 and both 
community and household transmission.10 The SC-COSMO framework enables quantification and 
propagation of uncertainty to generate probabilistic projections – not only producing estimates of 
expected outcomes, but also allowing assessment of the likelihood and magnitude of extreme 
events like exceeding hospital capacity under different scenarios.29 We use comprehensive data on 
cases, deaths and hospitalizations to estimate the parameters of the model, which allows us to 
accurately represent the epidemic dynamics in MCMA. Additionally, we have information on current 
hospital capacity in the city that allows us to determine when and how likely it is to exceed Covid-19-
specific hospital capacity under different scenarios. 
 
As MCMA’s Covid-19 epidemic continues to evolve, there is a high probability that the area’s 
hospital capacity will be outstripped by early January 2021, especially if contacts during the end-of-
year holidays cannot be substantially reduced. As resumption of in-person school is a major priority, 
it is important to ensure that NPI measures are instituted in schools and that the unavoidable 
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increases in contacts that school reopenings will trigger are offset by more effective social distancing 
in the community. Even if schools are not reopened and social distancing in the community 
improves, there is an urgent need for MCMA to increase its hospital capacity. Finally, our findings 
highlight the importance of simulation modeling-based policy analysis as a tool to support timely 
decision making. 
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Tables 

Table 1. Demographic, health system capacity and Covid-19 outcome data for Mexico City Metropolitan Area 
(MCMA) 

  Value Source 

Demography 

Total population in the state of MCMA 21,942,666 CONAPO 14 

Population density (population/mi2) 53,339 CONAPO14 and INEGI30  

Health system Covid-19 capacity as of December 7, 2020 

Total hospital beds 9,667 Digital Agency for Public Innovation13 

Beds with ventilators 2,659 Digital Agency for Public Innovation13 

Covid-19 outcomes as of December 7, 2020 

Cases 344,028 Ministry of Health of Mexico6 

Cumulative case rate (per 100,000) 1,167  Author’s calculation 

Deaths 27,733 Ministry of Health of Mexico6 

Cumulative death rate (per 100,000) 126 Author’s calculation 

Hospitalized patients 68,225 Ministry of Health of Mexico6 

Hospitalized patients requiring 
ventilator 

12,458 Ministry of Health of Mexico6 

 

  



 14 

Table 2. Model input parameters 

Calibrated parameters 

Parameter 
Posterior 

mean 
Posterior 95% 

CrI 
Prior distribution Source 

Transmission probability per effective contact per day 

Community 0·19 (0·18 – 0·20) Uniform(0·10, 0·30) Calibrated 

Household 0·32 (0·24 – 0·39) Uniform(0·15, 0·40) Calibrated 

Effectiveness of NPI as a proportional reduction in effective contacts 

(2020/03/21 - 2020/04/17) 0·52 (0·39 – 0·61) Uniform(0·25, 0·75) Calibrated 

(2020/04/17 - 2020/05/23) 0·53 (0·45 – 0·61) Uniform(0·25, 0·75) Calibrated 

(2020/05/23 - 2020/08/11) 0·59 (0·54 – 0·64) Uniform(0·25, 0·75) Calibrated 

(2020/08/11 - 2020/10/26) 0·56 (0·52 – 0·60) Uniform(0·25, 0·75) Calibrated 

(2020/10/26 - 2020/12/07) 0·47 (0·39 – 0·54) Uniform(0·25, 0·75) Calibrated 

Detection rate per day 

Initial 0·08 (0·05 – 0·11) Uniform(0·005, 0·12) Calibrated 

Final 0·16 (0·09 – 0·23) Uniform(0·005, 0·25) Calibrated 

Hospitalization parameters 

Parameter Mean 95% CI Source 

Proportion of detected cases being hospitalized  

March 31st 0·53 (0·29 – 0·76) Author’s 
calculation 

April 30th  0·44 (0·21 – 0·67) Author’s 
calculation 
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June 30th  0·28 (0·10 – 0·52) Author’s 
calculation 

October 31st  0·17 (0·04 – 0·38) Author’s 
calculation 

December 7th  0·15 (0·03 – 0·35) Author’s 
calculation 

Proportion of hospitalizations requiring a bed with ventilator 

March 31st 0·34 (0·29 – 0·40) Author’s 
calculation 

April 30th  0·26 (0·21 – 0·31) Author’s 
calculation 

June 30th  0·22 (0·17 – 0·28) Author’s 
calculation 

October 31st  0·24 (0·19 – 0·29) Author’s 
calculation 

December 7th  0·23 (0·18 – 0·29) Author’s 
calculation 

 Mean SD Source 

Length of stay (days) 

Patients not on ventilator 13·29 7·17 Calibrated 

Patients using ventilators 13·89 13·17 Calibrated 

Case fatality parameters 

Parameter Mean 95% CI Source 

Probability of detected cases dying (%) 
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March 31st 17·6 (16·6– 18·6) Author’s 
calculation 

April 30th  18·6 (18·2 – 19·1) Author’s 
calculation 

June 30th  9·6 (9·4 – 9·9) Author’s 
calculation 

October 31st  5·0 (4·9 – 5·2) Author’s 
calculation 

December 7th  4·0 (3·8 – 4·1) Author’s 
calculation 

Parameter Mean SD  

Time from detection to death in 
days 

9·2 8·6 Author’s 
calculation 

*These values were calculated only using the data of confirmed cases; CrI: Credible interval; CI: Confidence 
interval; SD Standard deviation 
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Figures 

Figure 1. Observed (red dots) and model-predicted (green lines) Covid-19 incident detected cases 
(A), deaths (B), cumulative cases (C), and deaths (D) in MCMA between February 24, 2020 and 
March 7, 2021. Left column plots assume compliance with social distancing during end-of-year 
holiday period. Right column plots assume substantially less compliance with social distancing during 
the end-of-year holiday period. Double-dashed vertical line represents the last day used for 
calibration. The green shaded area shows the 95% posterior model-predictive interval of the 
outcomes and the green lines show the posterior model-predicted mean based on 1,000 simulations 
using samples from posterior distribution. 

  



 18 

Figure 2. Observed (red area) and model-predicted (green lines) total hospital occupancy and 
demand in MCMA between February 24, 2020 and March 7, 2021. Left plot assumes compliance 
with social distancing during end-of-year holiday period. Right plot assumes substantially less 
compliance with social distancing during the end-of-year holiday period. Double-dashed vertical line 
represents the last day used for calibration. The green shaded area shows the 95% posterior model-
predictive interval of the outcomes and the colored lines show the posterior model-predicted mean 
based on 1,000 simulations using samples from posterior distribution. The horizontal black lines 
show total Covid-19-specific hospital capacity. 
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Figure 3. Estimated model-predicted daily incident cases (A) and deaths (B) by scenario in MCMA 
between December 7, 2020 to March 7, 2021. Left column plots assume compliance with social 
distancing during end-of-year holiday period. Right column plots assume substantially less 
compliance with social distancing during the end-of-year holiday period. Vertical dashed line 
represents the day of policy implementations. 
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Figure 4. Estimated model-predicted daily hospitalization demand in MCMA between December 7, 
2020 and March 7, 2021. Left column plots assume compliance with social distancing during end-of-
year holiday period. Right column plots assume substantially less compliance with social distancing 
during the end-of-year holiday period. 

 

  



 21 

Figure 5. Daily estimated likelihood of hospitalization demand exceeding Covid-19-specific capacity 
in MCMA between December 7, 20201 and March 7, 2021 by levels of compliance with social 
distancing during end-of-year holiday period. Top panel assumes compliance with social distancing 
during end-of-year holiday period. Bottom panel assumes substantially less compliance with social 
distancing during the end-of-year holiday period. 
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1. Mexico City Metropolitan Area (MCMA) 

Table S1. Mexico City Metropolitan Area: projected population in 2020. 

Municipality Total 

Hidalgo State 

Tizayuca 137,165 

Mexico City 

Alvaro Obregon 755,537 

Azcapotzalco 408,441 

Benito Juarez 433,708 

Coyoacan 621,952 

Cuajimalpa de Morelos 199,809 

Cuauhtemoc 548,606 

Gustavo A. Madero 1,176,967 

Iztacalco 393,821 

Iztapalapa 1,815,551 

La Magdalena Contreras 245,147 

Miguel Hidalgo 379,624 

Milpa Alta 139,371 

Tlahuac 366,586 

Tlalpan 682,234 

Venustiano Carranza 433,231 

Xochimilco 418,060 

State of Mexico 

Acolman 186,256 

Amecameca 54,548 

Apaxco 31,576 

Atenco 70,016 

Atizapan de Zaragoza 557,108 

Atlautla 32,674 

Axapusco 30,040 

Ayapango 11,081 

Chalco 397,344 

Chiautla 31,803 

Chicoloapan 226,911 

Chiconcuac 27,570 
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Municipality Total 

Chimalhuacan 720,207 

Coacalco de Berriozabal 310,743 

Cocotitlan 15,387 

Coyotepec 44,201 

Cuautitlan 175,004 

Cuautitlan Izcalli 577,190 

Ecatepec de Morelos 1,707,754 

Ecatzingo 10,090 

Huehuetoca 147,326 

Hueypoxtla 46,742 

Huixquilucan 290,231 

Isidro Fabela 12,512 

Ixtapaluca 551,034 

Jaltenco 29,179 

Jilotzingo 20,713 

Juchitepec 27,241 

La Paz 309,596 

Melchor Ocampo 61,172 

Naucalpan de Juarez 910,187 

Nextlalpan 43,640 

Nezahualcoyotl 1,135,786 

Nicolas Romero 441,064 

Nopaltepec 9,753 

Otumba 38,186 

Ozumba 31,154 

Papalotla 4,367 

San Martin de las Piramides 29,145 

Tecamac 500,585 

Temamatla 13,690 

Temascalapa 41,685 

Tenango del Aire 13,344 

Teoloyucan 69,466 

Teotihuacan 60,992 

Tepetlaoxtoc 33,108 
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Municipality Total 

Tepetlixpa 21,137 

Tepotzotlan 104,335 

Tequixquiac 39,658 

Texcoco 262,015 

Tezoyuca 46,527 

Tlalmanalco 51,370 

Tlalnepantla de Baz 756,537 

Tonanitla 10,960 

Tultepec 160,943 

Tultitlan 556,493 

Valle de Chalco Solidaridad 419,700 

Villa del Carbon 50,614 

Zumpango 217,166 
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Figure S1. Municipalities of Mexico City, State of Mexico and the State of Hidalgo that conform Mexico City 
Metropolitan Area
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2. Calibrated posterior distributions 

Figure S2. Scatter plot of pairs of calibrated parameters with correlation coefficient and posterior marginal 
distributions. 𝛽: community transmission rate; 𝜏: household transmission rate; 𝜂!: effectiveness of NPI 
on 2020/03/21 - 2020/04/17; 𝜂": effectiveness of NPI on 2020/04/17 - 2020/05/23; 𝜂#: effectiveness of 
NPI on 2020/05/23 - 2020/08/11; 𝜂$: effectiveness of NPI on 2020/08/11 - 2020/10/26; 𝜂%: effectiveness 
of NPI on 2020/10/26 - 2020/12/07; 𝜈&': initial detection rate; 𝜈(': final detection rate; 𝜈)*+,: rate of 
change between initial and final detection rate; 𝜈-./: Day at which detection rate is between initial and 
final values.
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Figure S3. Prior and posterior marginal distributions of calibrated parameters. 𝛽: community transmission rate; 
𝜏: household transmission rate; 𝜂!: effectiveness of NPI on 2020/03/21 - 2020/04/17; 𝜂": effectiveness of NPI 
on 2020/04/17 - 2020/05/23; 𝜂#: effectiveness of NPI on 2020/05/23 - 2020/08/11; 𝜂$: effectiveness of NPI on 
2020/08/11 - 2020/10/26; 𝜂%: effectiveness of NPI on 2020/10/26 - 2020/12/07; 𝜈&': initial detection rate; 𝜈(': 
final detection rate; 𝜈)*+,: rate of change between initial and final detection rate; 𝜈-./: Day at which detection 
rate is between initial and final values. 
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3. Supplementary results 

Figure S4. Effective reproduction number (Re) for status-quo (A) and by intervention (B) by levels of 
compliance with social distancing during end-of-year holiday period. Double-dashed vertical line in panel A 
represents that last day used for calibration. The shaded area shows the 95% posterior model-predictive interval 
of Re and colored lines show the posterior model-predicted mean based on 1,000 simulations using samples 
from posterior distribution. 
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Figure S5. Cumulative proportion of population ever been infected under status quo in which there is 
substantially less compliance with social distancing during the end-of-year holiday period. Double-dashed line 
indicates last day used for calibration. The shaded area shows the 95% posterior model-predictive interval of the 
outcomes and the colored line shows the posterior model-predicted mean based on 1,000 simulations using 
samples from posterior distribution.  
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Figure S6. Cumulative proportion of infections being detected as cases for the status quo in which there is 
substantially less compliance with social distancing during the end-of-year holiday period. The model’s 
calibrated case detection rate is time-varying. The shaded area shows the 95% posterior model-predictive 
interval of the outcomes and the colored line shows the posterior model-predicted mean based on 1,000 
simulations using samples from posterior distribution. 
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Table S2. Estimated mean and 95% prediction interval in parentheses of cumulative cases and deaths by March 
07, 2021 under different holiday contact scenario. (A) Assuming reduced social contacts during the end-of-year 
holiday period; (B) assuming higher social contacts during the end-of-year holiday period. 

Policy 
Holiday contact scenario 

(A) (B) 

Cumulative Covid-19 cases (millions) 

Social distancing: status quo; Schooling: not in-person 
0·98 

(0·59 – 1.59) 

1·35 

(0·79 – 2·00) 

Social distancing: stricter; Schooling: not in-person 
0·77 

(0·53 – 1·17) 

1·10 

(0·70 – 1·59) 

Social distancing: stricter; Schooling: in-person 
0·87 

(0·58 – 1·34) 

1·20 

(0·79 – 1·78) 

Social distancing: status quo; Schooling: in-person 
1·19 

(0·66 – 1·92) 

1·61 

(0·93 – 2·37) 

Cumulative Covid-19 deaths (thousands) 

Social distancing: status quo; Schooling: not in-person 
53 

(37 – 78) 

68 

(45 – 94) 

Social distancing: stricter; Schooling: not in-person 
45 

(35 – 61) 

57 

(42 – 78) 

Social distancing: stricter; Schooling: in-person 
49 

(37 – 67) 

63 

(46 – 86) 

Social distancing: status quo; Schooling: in-person 
61 

(40 – 89) 

77 

(50 – 107) 
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Figure S7. Estimated weekly percent increase in incident and cumulative cases and deaths comparing status-quo 
in which there is substantially less compliance with social distancing during the end-of-year holiday period vs 
continuing observed compliance during the holiday period in MCMA. Vertical lines denote the start and end of 
less compliance with social distancing during the end-of-year holiday period. The error bars show the 95% 
posterior model-predictive interval of the percentage increases based on 1,000 simulations using samples from 
posterior distribution. 

 

 



4. Stanford-CIDE Coronavirus Simulation Model (SC-COSMO)
framework∗

*Additional contributors to the specific design and implementation of the SC-COSMO model described below are
listed in alphabetical order and include: Anneke Claypool, Michael Fairley, Valeria Gracia, Natalia Kunst, Andrea
Luviano, Yadira Peralta, Marissa Reitsma.
†All Members of the SC-COSMO Modeling Consortium provided support, input and/or helpful comments on our

work generally and are listed in alphabetical order here: Fernando Alarid-Escudero, Jason Andrews, Jose Manuel
Cardona Arias, Liz Chin, Anneke Claypool, Hugo Berumen Covarrubias, Ally Daniels, Mariana Fernandez, Hannah
Fung, Zulema Garibo, Jeremy Goldhaber-Fiebert, Valeria Gracia, Alex Holsinger, Erin Holsinger, Radhika Jain, Nee-
sha Joseph, Natalia Kunst, Elizabeth Long, Andrea Luviano, Regina Isabel Medina Rosales, Marcela Pomar Ojeda,
Yadira Peralta, Lea Prince, Marissa Reitsma, Neil Rens, Tess Ryckman, Joshua Salomon, David Studdert, Hirvin
Azael Diaz Zepeda.

1 Model description
The epidemiology of COVID-19 in the absence of treatment or vaccination can be described as a multi-compartment
susceptible-exposed-infected-recovered-susceptible (MC-SEIR) model with demography.1 In such a model, the ex-
posed (E) compartments represent individuals that are infected but who are not yet infectious, and the infectious (I)
compartments represent individuals that are both infected and infectious (i.e., can infect susceptibles (S) if a contact
occurs).1 Notably, by using multiple levels for the E and I compartments along with allowing for differential rates
of symptom onset and of detection (described in sections below), the model structure can also capture the possibility
of asymptomatic infectiousness as well as infectiousness varying over the course of infection. Figure S8 depicts the
generalized structure of the non-age-stratified MC-SEIR compartmental model (age structure described below). Each
of these compartments represents part of the population characterized by their COVID-19 status as a function of time.
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Figure S8: Diagram of the SC-COSMO model.
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Figure S8 includes a number of important processes and for simplicity elides others that are included in the model
and that we will describe subsequently. In the figure, we see that people are born into the susceptible compartment S
at a rate b. Not shown explicitly, all people face age-specific background mortality rates (µ) from all compartments.
People can become infected at a rate λ and enter the exposed compartment E, progressing to becoming infectious I
before recovering and enteringR. Those who are infected face an excess risk of death from their COVID-19 infections
which may be reduced by proper and timely supportive medical care (pd and αDX , respectively). The figure shows
that the exposed and infectious compartments are stratified by severity level (l = 1, . . . , L) and by whether they have
been diagnosed (DX). We ensure realistic distributions of times in E and I by using a multi-compartment structure;
specifically, we have multiple E and I compartments, and rates of progression (σ) from E to I and (γ) from I to R
that are multiplied by the number of each type of compartments (J and K, respectively).1

For epidemics like COVID-19, both age-structure and household-structure are important to consider to appropri-
ately capture its dynamics.2 We next describe how these are incorporated into the model.

We begin with age-structure. Because it is important to model the age-dependent dynamics of COVID-19 contacts,
transmission, and case severity, we expanded the MC-SEIR model to include a realistic age structure (RAS) and
heterogeneous, venue-specific age-structured mixing outside of the household (we describe household mixing later).
We divided the population into N age groups where each a-th age group has its own set of Sa, Ej

l,a, EDXj
l,a, Ikl,a,

IDXk
l,a, and Ra compartments for a = 1, . . . , N . The total size of the population at time t is Pop which is the sum

across compartments, age groups, and all other stratifications noted above. Importantly, we term the components of
the model described up until now the “community submodel” (i.e., the non-household components) to differentiate
them from the “household submodel” which we describe next.

We provide an initial description of the household submodel and how it interacts with the community submodel.
The household submodel acknowledges that people are generally embedded within households. Such embeddings are
important to consider particularly because interventions have focused on shelter-in-place where people continue to be
exposed to contacts and transmission within their households even as their exposures outside of their households have
been reduced.

It is challenging to construct compartmental models that properly embed within-household and community trans-
mission. Approaches for doing this have been described previously for simple SIR models (e.g.,3). We extend the
prior approach in,3 combining it with our community submodel (the RAS MC-SEIR model) for COVID-19 to produce
an overall model of the population.

To describe overall transmission dynamics in the population, we first describe the key elements of the household
submodel, then the details of transmission in the RAS MC-SEIR submodel and how the household submodel’s trans-
mission is integrated into it, and finally provide full details about the household submodel. The key components of the
household submodel are: 1) once a given household’s members are all infected and/or recovered, no further transmis-
sion occurs within that household (unless there are births into the household); and 2) if households are not completely
isolated from one another such that community transmission is still occurring, then the within-household force of
infection (related to the household Secondary Attack Rate, e.g.,4) can drive additional community transmission. This
occurs through chains of transmission where one household member infects another and then, either member also
transmits to individuals in the community who are outside of the household. Through these key features, the house-
hold submodel generates a component of the overall force of infection which we term λHH . The details of this force
of infection are provided with the description of the household submodel below in equation (11).

1.1 Community submodel with transmission from household force of infection
The community submodel (the RAS MC-SEIR model) is described by a system of [(2 + 2L(J + K))N ] ordinary
differential equations (ODEs):
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dS1

dt
= bPop− (λ1 + µ1)S1 − λ1,HHPop1

dSa

dt
= − (λa + µa)Sa − λa,HHPopa for a = 2, . . . , N

dE1
1,a

dt
= λaSa −

(
rE

1

1,a + σJ + νE
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l + φE
1
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)
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dEj
l,a

dt
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j
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j
(l−1),a −
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rE

j

l,a + σJ + νE
j

l + φE
j
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)
Ej

l,a for j = 2, . . . , J ; l = 2, . . . , (L− 1)

dEj
L,a

dt
= σJEj−1

L,a + rE
j

(L−1),aE
j
(L−1),a −

(
σJ + νE

j

L + φE
j

L + µa

)
Ej

L,a for j = 2, . . . , J

dEDX1
l,a

dt
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(
νE

1

l + φE
1

l

)
E1

l,a − (σJ + µa)EDX1
l,a
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l,a
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= σJEDXj−1
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(
νE

j
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j

l

)
Ej

l,a − (σJ + µa)EDXj
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dI1
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= σJEJ
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(l−1),a −
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= γKIk−1
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Ikl,a − (γK + µa) IDXk

l,a, for k = 2, . . . ,K; l = 1, . . . , L

dRa

dt
=

L∑

l=1

[(
1− pdl,a

)
γK

(
IKl,a
)

+
(
1− αDX

l pdl,a
)
γK

(
IDXK

l,a

)]
− µaRa,

(1)

where b is the birth rate into the youngest age class a = 1; σ is the rate at which exposed individuals in class Ej
l,a

progress to class Ej+1
l,a and also from EDXj

l,a to class EDXj+1
l,a for j = 1, . . . , (J − 1) and from the exposed class

EJ
l,a to the infected class I1

l,a and from EDXJ
l,a to IDX1

l,a; rE
j

l,a is the rate of developing a more severe infection for

individuals moving fromEj
l,a toEj

(l+1),a for each of the severity classes l = 1, . . . , (L−1); νE
j

l is the rate of detection

due to symptoms from which Ej
l,a go to EDXj

l,a for j = 1, . . . , J ; φE
j

l is the rate of detection due to screening from
which Ej

l,a go to EDXj
l,a for j = 1, . . . , J ; γ is the rate at which infectious individuals in class Ikl,a progress to class

Ik+1
l,a and also from IDXk

l,a progress to class IDXk+1
l,a for k = 1, . . . , (K−1) and it is also the recovery rate from the

infectious classes IKl,a and IDXK
l,a to the recovered class Ra; rI

k

l,a is the rate of developing a more severe infection for

individuals moving from Ikl,a to Ik(l+1),a for each of the severity classes l = 1, . . . , (L− 1); νI
k

l is the rate of detection

due to symptoms from which Ikl,a go to IDXk
l,a for k = 1, . . . ,K; φI

k

l is the rate of detection due to screening from
which Ikl,a go to IDXk

l,a for k = 1, . . . ,K; pdl,a is the proportion of infectious individuals in class IKl,a that die from
COVID-19; αDX

l is a reduction in the proportion who die from COVID-19 due to detection and appropriate healthcare
in severity class l; and µa represents the age-specific background mortality experienced from all compartments and
stratifications.

Given its main intended uses, the current model does not include immigration inflows into the population nor does
it include population aging. Its equations would require modification to consider such scenarios.
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Table 1: Description of variables, subscripts and superscripts

Symbol Description

Subscripts
a Age group {1, . . . , N}
l Severity levels {1, . . . , L}

Superscripts
j Number of exposed compartment {1, . . . , J}
k Number of infectious compartment {1, . . . ,K}

Variables
λa Force of infection at age group a overall
λa,HH Force of infection at age group a from household transmission
Sa Susceptible in age group a
Ej

a j-th exposed/infected in age group a; for j = 1, . . . , J

EDXj
l,a j-th detected exposed/infected in age group a; for j = 1, . . . , J and l = 1, . . . , L

Ikl,a k-th infectious in age group a; for k = 1, . . . ,K and l = 1, . . . , L

IDXk
l,a k-th detected infectious in age group a; for k = 1, . . . ,K and l = 1, . . . , L

Ra Recovered in age group a

1.1.1 Force of infection

The force of infection (FOI), λ, is the key quantity governing the transmission of infection within a given population,
defined as the instantaneous per capita rate at which susceptibles acquire infection. FOI reflects both the degree of
contact between susceptibles and infectious individuals and the transmissibility of the pathogen per contact. Because
contacts can happen in a variety of different venues (1, ..., V ) that may be differentially reduced under particular
intervention scenarios (e.g., school closures reduce school contacts), we actually construct λ as

∑V
v=1 λ

v for all non-
household venues. The model also incorporates a force of infection from household transmission, λHH , which we
define separately from the other components of the FOI in the description of the household submodel below in equation
(11).

The FOI λva (for the non-household venues) represents the venue-specific rate of disease transmission from infec-
tious people in all age groups to susceptibles in age group a,5 and likewise, we define the age-group specific FOI for
household transmission λa,HH . Overall, the non-household λva is defined for the COVID-19 RAS MC-SEIR model
from a particular venue v as

λva =

K∑

k=1

[
N∑

a′=1

βk
aW

v
a,a′

(
L∑

l=1

Ikl,a′

Pop

)
+

N∑

a′=1

fβk
aW

v
a,a′

(
L∑

l=1

IDXk
l,a′

Pop

)]
; a = 1, . . . , N, (2)

where the transmission rate, βk
a , describes the probability that an infected individual of age a′ who is k days into his

infectious period will infect a susceptible of age a per unit of time and W v
a,a′ is the {a, a′} entry of the venue-specific

Who-Acquired-Infection-From-Whom (WAIFW) matrix,W v , and f ∈ [0, 1] is a reduction factor in transmission from
infectious individuals that are diagnosed (due for example to quarantine and isolation). As shown in equation 2 by the
fact that we are summing over infection severity levels l and that we do not have separate β parameters by severity
level, the current model makes no assumption about severity level-specific differential transmissibility other than the
indirect effect that more severe infections are more likely to be diagnosed and hence may transmit less frequently post
diagnosis. In fact, the current model assumes that β is a single constant value.

Each W v has N2 elements, representing mixing between each pair of age groups in the model at that venue. The
venue-specific FOI in equation (2) for λv is therefore a system of N equations that can be represented in matrix form.
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1.2 Household submodel
As with,3 the household submodel tracks the proportion of households whose members are in various disease states of
COVID-19’s natural history. For example, of all households in a given population at some time during the simulation,
5% of 3-person households might have 1 member susceptible and 2 members recovered (HH(S=1,...,R=2)). More
generally, we denote the proportion of households whose members are in any combination of natural history states
(i.e., counts of members in each state which we abbreviate sc for state counts) as HHsc where 1 =

∑
scHHsc.

The number of distinct proportions (HHsc) that represent households with different state counts grows rapidly
with both household size (hhsize) and with the number of natural history states (states). In fact, the equation for the
number of household proportions (and hence differential equations) with a fixed household size is:

ODEs =
(hhsize+ states− 1)!

(hhsize!(states− 1)!)
. (4)

To keep the number of household types, and hence ODEs, manageable, we make a number of simplifying assump-
tions. First, we assume that all households are the same size as the average household for a given location, rounding
the average household size to the nearest whole integer (e.g., hhsize = 3 for counties in California and likewise
for Mexico City Metropolitan Area, Mexico). Second, we assume that the age composition, distribution of infection
severity, and fraction of infections that are detected are the same across households; therefore, while the household
submodel retains the multi-compartment structure for exposed E and infectious I states, it does not explicitly stratify
by age of household members, nor does it explicitly differentiate between undetected and detected (DX) infections or
severity levels of infection.

The household submodel’s initial state is computed in a manner that corresponds with the community submodel’s
initial state. For a given size of the total population at the start of the community model Popt=0 under the assumption
of all households being size hhsize = hhsizeavg, the number of households is Nhouseholds = Popt=0/hhsizeavg.
If there is one person in the E1 state in the entire population, then the fraction of households that have an infected
member is 1/Nhouseholds and the remainder are households with all susceptibles: (Nhouseholds−1)/Nhouseholds. For
other starting conditions (i.e., more than one exposed, infectious, or recovered individual) this initialization generalizes
easily under the assumption (which we make) that the initial few infections are not correlated within household (i.e.,
if there are 3 infections they would be in 3 separate households).

The household submodel’s dynamics include: progression, recovery, within-household and community-household
transmission, births, and deaths. Modeling many of these dynamics in the household submodel is somewhat more
complicated than in the community submodel because the household submodel tracks the fraction of households in a
set of discrete states characterized by counts of members in each natural history state and has multiple exposed and
infectious compartments relevant for progression and recovery.

The intuition of how the household submodel handles progression and recovery is given in the following set
of examples. In a simplified example ignoring the multi-compartment nature of the exposed and infectious states
and considering only progression, if there are 4 household members (1 susceptible, 3 exposed, 0 infectious) at a
given time, then it is possible that 0, 1, 2, or all 3 of the exposed members will progress to infectious on a given
day. Hence, the possible states that this household could go to include (1 susceptible, 3 exposed, 0 infectious),
(1 susceptible, 2 exposed, 1 infectious), (1 susceptible, 1 exposed, 2 infectious), or (1 susceptible, 0 exposed, 3
infectious). In the example, the frequency of households moving to each of the states follows a binomial distribution
with the probability related to the rate of progression (σ). In a similar example considering multiple exposed and
infectious compartments in the MC-SEIR model, the binomial distribution’s probability is then related to σJ ; and if
there are household members in several of the multi-compartment exposed states, the general form of these resulting
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frequencies of household states follows a convolution of binomial distributions. This is likewise the case for recovery
where, in the multi-compartment model, the frequencies of resulting household states also follow a convolution of
binomial distributions with probability related to γK.

In the examples for progression and recovery above for models of counts of household members where E and/or I
are multi-compartment, resulting counts of household members in states follow a convolution of binomial distributions.
The details of this calculation in a general form are given here. Consider C individuals (i.e., the members of a
household) each in a Markov chain with states Xc

t ∈ {1, . . . ,M} for c ∈ {1, . . . , C}. The M states in our case are
those in the MC-SEIR model. The Markov chain has the following transition probabilities (where for simplicity we
have set the probability of flow from R to S equal to 0):

P (Xc
t+1 = Xc

t + 1 | Xc
t ) = p, Xt = 1, . . . ,M − 1 (5)

P (Xc
t+1 = Xc

t | Xc
t ) = 1− p, Xt = 1, . . . ,M − 1 (6)

P (Xc
t+1 = Xc

t | Xc
t ) = 1, Xt = M (7)

In other words, for all states except the last, with probability p, each individual progresses from Xt to Xt+1 (e.g.,
E2 to E3 or from E3 to I1) and with probability 1− p the individual stays in the same state. Individuals remain with
certainty in the last (M th) state after progressing to it.

Having considered each individual, we now consider counts of household members. Let Y m
t be the number of

individuals in statem at time t. We consider a new Markov chain with state (Y 1
t , . . . , Y

M
t ). The transition probabilities

can be calculated as follows. Given a transition from state (Y 1
t , . . . , Y

M
t ) to state (Y 1

t+1, . . . , Y
M
t+1):

1. For each of theM−1 transition arcs in the underlying Markov chain, find the number of individuals transitioning
from state m to m+ 1, denoted ∆t(m,m+ 1) for m < M .

2. The probability of the transition is then a (convolution of) binomial distribution(s):

M−1∏

m=1

(
Y m
t

∆t(m,m+ 1)

)
p∆t(m,m+1)(1− p)Y m

t −∆t(m,m+1) (8)

To find the value of ∆t(m,m+ 1), use the following backwards recursion:

∆t(M − 1,M) = YM
t+1 − YM

t (9)
∆t(m− 1,m) = Y m

t+1 + ∆t(m,m+ 1)− Y m
t (10)

In other words, for each source state (e.g., E2) which at time t might have h household members in it, 0, 1, . . . ,
h members may progress to E3 at time t + 1 with the rest remaining in E2. The counts of progressors are binomial
distributed. However, if there are also some household members in E3 at time t then the count of people in E3 at time
t + 1 is more complicated because it depends on the count of the progressors from the first example as well as the
count of the non-progressors among those in E3. Hence, we arrive at a convolution of binomial distributions as the
general description provided in equation (8) with a simple binomial distribution for cases where there are individuals
in one source state and none in the destination state at time t.

There are both within-household and community-household transmission routes in the submodel. Within-household
transmission involves infectious household members infecting susceptible household members. Community-household
transmission involves infectious individuals in the community (people who are not household members) infecting sus-
ceptible household members. Within-household transmission is related to three components: a) the current number
of infectious household members; b) the rate of contact between household members; c) the probability of within-
household transmission given household contacts (τ ). The number of infectious individuals in the household is given
directly by the household compartment being considered. The number of daily household contacts is computed from
the household mixing matrix for the given jurisdiction that we estimate as described below. Finally, note that be-
cause the intensity of household contacts may differ from contacts in the community, the probability of transmission
conditional on household contacts differs from the probability of transmission given community contacts (β) that we
described above.
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Like the community submodel, the household submodel also includes birth and deaths but in a manner that is
more simplified. First, since the household submodel considers proportions of households, it assumes that births
equal deaths since we want the sum of the proportions to equal 1 at all times (i.e., the number of households may
increase even as the proportions remain the same). Second, the household submodel assumes that the fraction of all
deaths that are due to COVID-19 is relatively small and hence exposes households to an average background mortality
rate (consistent with the jurisdiction that the community model is representing). Hence, there is an outflow from all
household submodel compartments at this death rate proportional to the fraction of all households they represent,
which determines an inflow of births that is spread proportionally across household compartments representing only
those with at least one susceptible member (i.e., newly born individuals are assumed to be born susceptible).

The household submodel must make certain approximations because it does not explicitly stratify by age structure
nor does it do so by diagnosis status of infectious individuals. This has several implications. The first is that contact
rates with household members and also with community members are age-weighted averages of sums of contacts
across ages in the corresponding venue-specific WAIFW matrices that are described above yielding contactsHH . The
second is that the community force of infection in the household submodel comprises age-weighted averages of forces
of infection from infectious and detected infectious individuals in the community submodel. The third is that just as
β is scaled by f in the community submodel for individuals who are infectious and detected, so too τ is scaled by
the same constant for within-household transmission yielding τ ′. However for scaling τ to produce τ ′, the fraction of
household infectious contacts to which this scaling factor applies is assumed to be the same as the fraction of prevalent
infectious individuals who are currently detected in the community submodel.

With this description of the household submodel, we can now define the household force of infection, λHH , which
connects the dynamics of the household submodel back to the community submodel. λHH depends on the number
of within-household contacts between susceptible and infectious members and the probability of transmission given a
household contact (τ ′). Within each household, we define the rate of new infections:

infectionHH = τ ′ ∗ contactsHH ∗
∑

sc

HHsc

(
infectiousHH,sc ∗ susceptibleHH,sc

hhsize

)
, (11)

which is the weighted average of within-household transmission (higher where there are more infectious and suscepti-
ble individuals simultaneously present in the household) where the weight is the fraction of households who have these
counts of infectious and susceptible members. The infections generated by household transmission, infectionHH ,
are not age stratified nor are they scaled to the overall population size so we multiply the rate by the size of the popu-
lation and then spread the new infections flowing from Sa to Ea based upon the proportion of the overall susceptible
population in each age group a at time t. This produces λa,HH which we include in the community submodel above.

We presented further details of this approach at the 2020 Society for Medical Decision Making Annual Meeting.6

1.2.1 Epidemiologic parameters

The epidemiology of COVID-19 is being elucidated at a rapid rate. Key epidemiological parameters include the
latent period (i.e., time spent infected but not yet infectious); the incubation period (i.e., time spent infected but
without symptoms); and the infectious period (time spent infectious prior to recovery). Data from7–9 suggest that
there are periods of time where some individuals are infectious but asymptomatic and also where some individuals are
symptomatic but not yet infectious.

We use the Exposed (E) compartments and Infectious (I) compartments to capture the latent and infectious periods,
estimating the distribution of their duration based primarily on.8 Specifically, we obtained the data and code from the
publications to regenerate the empirical distribution of outcomes in their sample. Then, we fit gamma distributions for
the distribution of durations of the latent and infectious periods respectively (latent shape and rate parameters (9.00,
3.00); infectious shape and rate parameters (2.18, 0.70)). These yield mean durations of latency and infectiousness of
3 days (1/σ) and 3.12 days (1/γ) respectively. For the latent period, 95 percent of people have durations between 1.5
and 4.9 days. For the infectious period, 95 percent of people have durations between 0.6 and 7.0 days.

We need to determine the numbers of E and I compartments for our MC-SEIR model. This is important because
the distributions of duration in a compartment are not exponential (what will result if there are only single E and I
compartments respectively) but rather to be realistic and consistent with the empirical data by having multiple com-
partments they will be gamma distributed.1 The number of compartments for E and for I must be positive integers
and should in general be less than or equal to the average duration. We sample from the gamma distribution that is
parametrized in terms of number of compartments and average duration from,1 selecting the number of compartments
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whose distribution is as close to those fit to the data from8 in the previous step (i.e., we minimize the sum of square
errors across the support of the distributions). We find that the best fit is achieved with 3 E compartments and 2 I
compartments.

To connect symptoms to our exposed compartments (E) and infectious compartments (I), we use the idea of severity
classes l that index the E and I compartments to denote asymptomatic (l = 1) and symptomatic (l = 2) individuals.
Similar to how we estimate durations of latency and infectiousness, we estimate the incubation period as a gamma
distribution, fitting to the data from7 (incubation shape and rate parameters (2.97, 0.59)) and also considering.9 This
yields a mean duration of incubation of 3 days with 95 percent of people having durations between 1.0 and 12.0
days. Notably, this implies that the incubation period can differ in duration from that of the latent period. We use
the incubation duration to inform the rates of change from lower severity classes to higher severity classes (i.e., rates
of transition from being asymptomatic to developing symptoms

(
rE

j

1,a, r
Ik

1,a

)
). By examining the cumulative density

function for the gamma distribution of incubation duration, we can determine the fraction of people at the beginning
of each day since infection who are still asymptomatic and the daily change in the cumulative fraction of people who
become symptomatic. These can be used to compute a daily rate of becoming symptomatic from the CDF which is
initially accelerating, rising from 0.024 on the first day to 0.106 on the second, 0.186 on the third, 0.248 on the fourth,
0.296 on the fifth, etc..

We note that in the absence of mass population screening or random population screening, it is likely that symp-
tomatic individuals (i.e., those in higher severity classes, l = 2) are more likely to be diagnosed and hence diagnosis
rates (ν) depend on an individual’s symptom status (described in detail in the sections below). While the model also
allows for the possibility of diagnosis via active screening (φ), generally we set this rate to 0 for the historic periods to
which we are calibrating.

We continue to actively review the literature to further update these parameter values as well as their uncertainties.

1.2.2 Demographic parameters

To model a given population, the main groups of demographic parameters required include: 1) the total size of the
population; 2) the age structure of the population (fraction of the total population in each age group); 3) the crude birth
rate; 4) the age-specific background mortality rates (i.e., mortality due to all causes other than COVID-19); and 5) the
ingredients to compute adjusted population density (total land area, urban land area, and fraction of total population
living in urban areas). All of the above groups of demographic parameters are obtainable from public sources for
many national and subnational geographic areas (i.e., counties of the United States or states of Mexico). However,
adjusted population density deserves specific attention here because of its role in the model inputs and therefore how
we specifically compute it.

For our modeling purposes, we are interested in population density because we wish to reflect the expected intensity
of mixing between people (contacts per unit time) with higher density implying more intense mixing (discussed in
further detail in the section on contact matrices below). Because of this, we opt for an alternative definition to those
typically used for population density. Instead of defining population density as total population divided by the total
area of a given jurisdiction or even the total population divided by the total land area (excluding water and other
uninhabitable places), we focus on adjusted (weighted) population density.

Adjusted population density depends on the following inputs: land area and the fraction of the population living
in urban areas. Land area (as opposed to total area) is important because we want to know how many people there
are per unit area in potentially livable places. Fraction urban is important because urban areas typically occupy a
small fraction of the total land area but can contain a high fraction of the population leading to very high densities
(e.g., New York City has a population density in excess of 50,000 people per mile2). Typically we would then assume
that a relatively small number of square miles houses the fraction of the population that is urban multiplied by the
total population yielding a high density and that the remaining rural population’s average density is its size divided
by the remaining land area. We then either model urban and rural populations separately or else take the average of
their densities weighted by the fraction of the population that is urban/rural which will generally be higher than just
dividing total population by the land area. To reflect relatively local differences, we try obtain such parameters at the
finest geographic level possible which is typically county-level or state-level and likewise model at the finest possible
geographic level.

While multiplying total population by percent urban yields the urban population, a challenge of this method for
constructing the population-weighted density is knowing how much of the land area is urban land area. It is often
possible to obtain lists of cities (e.g., for Brazil or Mexico) or urban and rural census tracts (e.g., for the U.S.) and
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their populations and land areas along with the state and/or county to which each city (or census tract) pertains. One
can then compute the density of the urban population in each of the geographic areas and likewise the rural density by
subtracting the urban land area from the total land area and the urban population from the total population. With these,
one can then compute a population weighted average based on the relative sizes of the urban and rural populations.

For our applied analyses, we have obtained demographic parameters from publicly available sources: For example,
for counties and states in the United States, we use: county population size and age structure from 2018;10 state-specific
life tables;11 and county urban/rural status, land area, and population density.12 Other specific countries on which we
are implementing the model have their own sub-national sources. For other countries at a national level we use.13, 14

1.2.3 Estimation of contact matrices

To model potential transmission between subgroups, we use a contact (WAIFW) matrix approach. Entries in our
contact matrix are the number of daily sufficient contacts a person in a given age group has with people of each age
group in the model. A sufficient contact is defined as one that is close, long, and/or intense enough so that transmission
could occur if one of the individuals was infectious and the other susceptible.

A data challenge for many sub-national populations is that there are no contact matrices estimated based on empir-
ical data sampled from them; hence we develop an approximation method based on available data to estimate contact
matrices. Specifically, we use publicly available national-level contact matrix estimates15 along with epidemiologi-
cal theory on how contact frequency/intensity depends on density in terms of functional form based on studies from
several other human and animal diseases.16, 17

We start with Prem et al.’s estimates of 152 national-level household and non-household contact matrices (total
minus household contact matrices), W v , whose structure is defined in (3), we compute average national-level age-
weighted (based on population age structure) household and non-household contact rates defined as

ratevcontacts,weighted =

N∑

a=1

pa

(
N∑

a′=1

W v
a,a′

)
. (12)

Each entry in the matrix W v represents the number of venue-specific contacts per day by a person of age group a
with people of age group a′. We sum the number of contacts that each age group a has over contacts for all the age
groups and then compute the weighted average with weights equal to pa, the proportion of the population in age group
a.

As epidemiological theory suggests that contacts are related to population density, we estimate this relationship
using a regression approach. We determine the population density of each country based on its urban population, urban
land area, rural population, and rural land area, using these to compute the urban and rural population densities and the
population-weighted average density.18 We then take the natural logarithm of these densities for the regression. We
regress the non-household contact rates on the logged population-distribution weighted density, to establish empirical
estimates of the concave relationship for non-household contacts and no such relationship for household contacts per
theorized relationships as described by Dalziel et al and Hu et al.16, 17

The results of this regression provide us with two coefficients (the intercept and the slope for the log-density)
which enable us to predict expected weighted average contacts for a population with any density. Our method makes
use of the slope coefficient for the log-density.

For each of the 152 countries for which we have data, we employ the following procedure to form sub-national
non-household contact matrix estimates (e.g., county-specific contact matrix estimates in the U.S. or state-specific
contact matrix estimates in Mexico).

First, for each sub-national geography, we determine the population average weighted density which we transform
using the natural logarithm. Next, we define a country-specific prediction equation using the slope coefficient from our
regression above and determining the intercept based upon passing through the national-level population age-weighted
non-household contact rate at the national-level log-density. With this prediction equation and the sub-national logged
densities we generate sub-national predicted non-household contact rates. We take the ratio of the sub-national rates
to the national rates to produce a regression-predicted density adjustment factor for each sub-national geography.

In addition to these density adjustment factors, in order to produce sub-national non-household contact matrices,
we require a representation of the country’s non-household contact matrix that is independent of its population age
structure (a homogeneously mixing population whose subgroups are not all of equal size will have more people mixing
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with the more prevalent subgroups even without any assortative preference). To remove the age structure, we divide
each age group’s vector of age-specific contact rates (the W v

a,a′s for each a and for all a′s) by the proportion of the
population in each age group (p′a).

For each sub-national geography, we then multiply the age structure-removed non-household country-level contact
matrix by the corresponding sub-national regression-predicted density adjustment factor; and finally, we multiply the
population proportions from the sub-national area (its p′as) by the entries in the matrix to compute a matrix of appro-
priate contact frequency with the same underlying assortative preferences for between-group contacts in a population
of the sub-national area’s age structure.

Since the SC-COSMO model considers several different who mixes with whom matrices for non-household con-
tacts (current venues include school, work, and other), the extension to the method above that we use in practice is
that once we have computed the regression-predicted density adjustment factors for each sub-national geography, we
apply them separately to each of the venue-specific national non-household contact matrices (after first removing the
national population age structure from these matrices). We then apply the sub-national population age structure to all
of the resulting matrices. This yields a set of venue-specific sub-national non-household contact matrices that depend
on the sub-national geography’s weighted population density and population age structure.

We presented further details of this approach at the 2020 Society for Medical Decision Making Annual Meeting.19

1.2.4 Excess Mortality and Case Fatality Rates

Excess mortality risk due to COVID-19 infection (the Infection Fatality Rate [IFR]) is difficult to determine with
currently available data because both the population at risk (i.e., denominator) and the number of observed COVID-19
deaths are limited to those individuals who are diagnosed with COVID-19. What can be computed directly from these
observed quantities is the Case Fatality Rate (CFR) and its extension, the age-specific CFR. However, the CFR and its
age-specific versions are likely overestimates of the corresponding IFRs in many situations. The reasons for this are
several. First, CFRs do not include undiagnosed COVID-19 infections and deaths. Second, diagnosis without active
surveillance selects for more severe cases which are more likely to die. Below we describe our current approach for
quantifying deaths from COVID-19.

Furthermore, the overall CFR (or IFR) estimated in one population is also likely to be a biased estimate for other
populations if their population age structures – specifically the age structures of COVID-19 cases/infections – differ
substantially. This is because the overall CFR (or IFR) is a weighted mean where the weights are proportion of people
in each age group at risk. Hence, we prefer the age-specific versions of these quantities, especially when transferring
them from one population to another. An additional source of potential bias is that supportive medical care may modify
the age-specific probabilities of death from COVID-19, and in some settings (e.g., low resource settings vs. wealthier
settings) such differences could also be substantial. While we currently do not have a formal method for correcting for
this sort of potential bias, we imagine an approach that incorporates measures/proxies of healthcare system efficacy
relevant for conditions like COVID-19 and perhaps differences in mortality for other conditions (e.g., hospitalized
pneumonia in general).

Our goal is to generate a set of age-specific COVID-19 mortality rates that are consistent with what has been
described in the literature and how it is estimated, consistent with time-series of observed COVID-19 deaths in the
jurisdictions we are modeling, and which is robust to potential changes in detection rates. We examine a variety of
published sources on IFR and CFR including20 along with the case series and death series from jurisdictions like
counties in California and states in Mexico.

Additionally, aside from the fact that diagnosed individuals may receive supportive medical treatment, we want
to ensure that the likelihood of death for any given individual is the same regardless of diagnosis status – that is,
that if we randomly tested 10% versus if we randomly tested 20% of the population and examined the fractions of
people who are infected with COVID-19 who die under each testing scenario, they should be the same. In reality, in
many settings, testing is not done on random samples of the population and very likely is concentrated in individuals
with more acute illness, those of certain ages, and other characteristics. For this reason, we allow testing rates to
differ by such characteristics and over time. Most importantly for our explanation here, we allow testing (and hence
diagnosis) to differ by severity level of illness and within a given severity level assume that death rates would be equal
for individuals who are detected or not detected (if effective, supportive medical care were not given).

Currently the model assumes that for people with COVID-19 infections and no symptoms (i.e., severity level 1),
the excess risk of death from COVID-19 is 0 (i.e., CFRl=1,a = 0). For individuals who have developed symptomatic
infections, there is an excess risk of death from COVID-19 (CFRl=2,a > 0) which is not currently strongly modified
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by supportive medical care (αDX
l=2 = 1) and that excess death risks have declined in time as testing and detection rates

of somewhat less severe cases within severity level 2 have increased. When detailed and comprehensive data on the
timing and mortality status of cases is available (as is the case in Mexico City Metropolitan Area and other states in
Mexico), we estimate time-varying case fatality rates using statistical regressions. In other cases, we calibrate these
excess death rates to observed, jurisdiction-specific time-series on COVID-19 deaths.

For settings like the United States, the CDC and other departments of health have published outcomes including
case fatality rates for an initial cohort of individuals as well as other information suggesting infection fatality rates,
and additional data are increasingly becoming available in the published literature as well as through state reporting.
We will continue to gather information to update excess mortality risks as new data become available.

1.2.5 Case detection rate

Just like fatality rates, detection rates are challenging to estimate because we lack an important component of the
denominator, the total number of prevalent infections that could be detected if perfectly sensitive and specific testing
were applied to all of them. The metrics that are more commonly reported are: 1) the time-series of total tests
performed; 2) the time-series of the fraction of people tested who are positive for COVID-19. But the relationship
between the commonly reported metrics and the detection rate is likely time-varying and confounded by a number of
other factors.

To begin to get a sense of the possible confounding and complexity, one can imagine the process (ignoring age
groups) as the following. At a given point in time, people who are infected with COVID-19 have a range of symp-
toms/severity. All else equal, we would expect people with more severe symptoms to seek testing more frequently.
However, we would also expect people with other Influenza-like Illnesses (ILIs) or who may believe they were ex-
posed to COVID-19 to also be more likely to seek testing. For both groups, those who seek testing/care will interact
with the healthcare system. At a given point in time, the system has specific criteria for testing (which may or may
not be strictly followed) as well as a supply constraint on the number of tests they can perform. So the number of
potentially true and false positive individuals who are tested depends on these factors and hence the case detection rate
is likely time-varying and challenging to determine.

We have described our approach to putting bounds on the detection rate based upon logical constraints and available
data on the testing capacity time-series and other modeling, which was presented at the 2020 Society for Medical
Decision Making Annual Meeting.21

1.2.6 Risk of hospitalization and conditional risk of requiring ICU given hospitalization

Risks of hospitalization depend on setting. For example, Verity et al. 202020 report risks of hospitalization conditional
on infection for COVID-19 patients in China which can differ from those in Mexico or in the United States. Because of
this, for specific geographic areas/populations whose healthcare system characteristics may differ, we try to incorporate
local data whenever they are available and of sufficiently high quality. It is possible to estimate probabilities and other
quantities required by the hospitalization module directly from data that is sufficiently detailed as we do with data from
Mexico City Metropolitan Area. For remaining quantities (potentially time-varying) required by the hospitalization
module, it is possible to calibrate them based on time-series of hospitalized prevalence (e.g., daily COVID-19 bed
census).

For detected COVID-19 positive individuals who are hospitalized, some fraction will ultimately have more severe
illness than others. Depending on illness severity, hospitalized patients have a risk of being placed in the intensive
care unit (ICU) or requiring a ventilator. Depending on severity and ICU or ventilator status, patients have different
length of stay distributions. Hospitalized COVID-19 prevalence at any given point in time is therefore determined by
the number of incident cases entering the hospital each day prior to this point in time and the fraction of those people
remaining in the hospital for a sufficient length of time such that they have not yet exited (i.e., leaving due to death or
discharge):

Hosp(T ) =
∑

a


∑

t≤T

IncDXa,t ∗ pHospa,t


∑

s,i

propa,s,i(1− CDFa,s,i(T − t))




 (13)

where T is the date for which we are interested in knowing the census of hospitalized COVID-19 patients (Hosp); t is
a date that happens on or before T ; a is an age group; IncDXa,t is the number of individuals with incident diagnoses

23



of COVID-19 for each age group on each date; pHospa,t is the probability of hospitalization among individuals with
diagnosed COVID-19 of a given age group diagnosed on a given date; s indexes more or less severe hospitalized
illness; i indexes ICU and non-ICU treatment; propa,s,i is the proportion of hospitalized COVID-19 patients of a
given age group whose illness is more or less severe and who are or are not treated in the ICU; and CDFa,s,i is the
cumulative density function of length of stay in the hospital for COVID-19 admitted patients conditional on age group,
severity, and ICU status for which we use gamma distributions. For Mexico City Metropolitan Area, we extend this
approach to have these length of stay distributions depend on the date at which hospitalization occurs.

From above, IncDXa,t is clearly specific to particular geographic areas. Likewise, the probabilities of hospital-
ization, the severity and ICU mixture of hospitalized patients, and the length of stays for each patient group likely vary
with local geography. Reports on severity, ICU and length of stay include studies by Guan et al. 2020 and Lewnard
et al. 2020 among others.22, 23 In brief, Guan et al. report the number of hospitalized patients within each of their
age categories who are severe or non-severe. From these and similar sources, we are able to compute quantities like:
the age-specific probability a hospitalized patient was severe; the probability of requiring ICU care conditional on
severity (which does not appear to be strongly conditional on age once severity is taken into consideration); and length
of stay distributions overall by age as well as distributions of additional time spent in the ICU. These quantities can
inform the parameters in the model above (e.g., length of stay estimates inform the CDFs; conditional probabilities of
severity inform the proportions facing different lengths of stay; etc.) when direct jurisdiction-specific quantities are
unavailable. The likelihood of hospitalization conditional on detection is observed in some data sets (e.g., states of
Mexico) but must be calibrated (e.g., counties in California).

1.2.7 Interventions to reduce transmission

The model currently includes non-pharmaceutical interventions (NPIs) which represent various forms of social dis-
tancing and masking (i.e., they act to reduce contacts and/or the probability of transmission given contacts). The size
of the intervention’s effect can vary across age group. Interventions have start and end times. Time-varying interven-
tion effects can therefore be constructed by defining a series of interventions whose start and end times bookend one
another and whose effect sizes can be different from one another. For example, an intervention may have a strong ef-
fect at the time when shelter-in-place orders were implemented but over time with re-openings its effect may attenuate
somewhat depending on continuing compliance with mask orders.

In general, modeled interventions can reduce effective contacts differentialy by venue. The intervention has no
effect on within-home contacts between household members. The intervention reduces contacts at work and other
venues proxying a variety of changes: e.g., greater distances and masking in outdoor locations like parks, more work-
from-home, business conducted outside, masking, and limits on the percentage capacity at which in-person businesses
are allowed to operate. Modeled interventions have two variants with respect to school contacts. The intervention can
be accompanied by school closures in which case there are no school contacts or else it can allow return to school with
some level of resumed contacts relative to pre-COVID school contact levels.

Another category of intervention effect is how well isolation of detected cases can occur. As noted above, the
model allows for a parameter that reduces contact/transmission for detected infectious individuals.

A final intervention category includes vaccines, of which a number of candidates are currently in phase 3 trials
but none have been approved to date. Current implementation work is extending the model’s capability to include
vaccination. This implementation work includes a vaccinated compartment in the model, creating realistic timing and
targeting of vaccination coverage scale-up, allowing for partial effectiveness and potentially waning vaccine immu-
nity which may differ from naturally acquired immunity, and incorporating vaccination effects within the household
submodel.

Parameterization of the NPI interventions is challenging because there are currently no direct measures on the
effect of interventions on effective contact frequencies, duration, or intensity. A variety of sources are attempting to
measure parts or proxies of this. The simplest are surveys of people asking them about how they have changed a
variety of their activities, how much time they spend in their homes, and for what reasons they go out. Simple indirect
measures include quantities like the amount of air population measured by area which shows declines in commuter
traffic and other production that yields emissions but does not show which types of trips are being curtailed. More
sophisticated measures focus on contacts (e.g., the collocation of cellphones based on triangulation from towers or the
location information of devices running various apps or the temporal proximity of credit card purchases by different
purchasers at the same store) or on mobility with or without collocation (e.g., the fraction of time that someone’s
device is not in the location it is during typical sleeping hours or the number of devices on public transport, or how
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far devices travel away from home). Average changes in these measures compared to pre-COVID levels either by
individual or by geography all form estimates of components of reductions in contacts sufficient to transmit COVID.
For many of these measures, at least in California counties, there are average reductions of 10-70 percent or more
which differ by county. What has not been reported to date are measures of individual (or small area) variance of such
reductions within county, which are likely important for considering potential transmission among subgroups who
must go out of their home (e.g., essential services providers) or who do not comply and then secondary transmission
from these groups. Furthermore, when people are mobile or collocate it is not clear from these measures whether they
are taking more or less precautions such as masking.

We currently use a composite approach to determine the timing and effect size of interventions by geographic
location. This involves extracting needed information from mobility data and model calibration (described below).
Currently we use multi-location mobility time-series data from sources like Google Mobility Trends and FourSquare
to determine when, after NPIs were first implemented, these time-series change. For example, directly after NPI
implementation when lock-downs were often in effect, the amount of travel to work locations dropped dramatically
but that effect attenuated over the next month or so and then with re-openings and second viral waves may have
fluctuated. By analyzing location-specific mobility time-series we determine when there are change-points for the
modeled intervention intensity in a given geographic location. However, because changes in mobility patterns do not
necessarily correspond to the full range of changes in contacts nor to how people may increase mask use for the same
number of contacts, we use model calibration to incidence data to inform the effect sizes for each segment of the
time-varying, geography-specific intervention effects. Additionally, we use and have recently made open source and
public a dataset containing county-specific information on public health orders, categorized by the type of activity(s)
they pertain to and the level of strictness.24

2 Calibration
A challenge for many mathematical simulation models is that they may require input values that are unobserved
or unobservable due to financial, practical, or ethical reasons. In such situations, model calibration can be used to
infer these values. Specifically, calibration is the process of estimating values for unknown or uncertain parameters
of a mathematical model by matching its outputs to observed clinical or epidemiological data (known as calibration
targets). The general goal of calibration is to identify set(s) of parameter values that maximize the fit between model
outputs and the calibration targets.25, 26

For the SC-COSMO model, calibration is required for a number of parameters that are not directly observed. These
include the community transmission rates (βk

a ), the household transmission rate (τ ), the time-varying case detection
rates

(
νE

j

l and νI
k

l

)
, and the time-varying, venue-specific effects of interventions on community transmission rates

(κvt ). Generally priors on parameters are defined based on existing knowledge about their values.27 As there is sub-
stantial uncertainty in these input parameters, we employ uniform prior distributions for each. The prior distributions
are uncorrelated, and they are relatively wide to reflect the underlying uncertainty. The prior ranges are defined for
particular settings (i.e., the prior ranges for counties in California may differ from those used for the states of Mexico).

Calibration targets are formed by time-series of incident detected case counts both prior to and after the implemen-
tation of NPIs. As the targets are counts, we construct a likelihood function by assuming that the calibration targets
(yi,t) are Negative Binomial distributed

yi,t ∼ NegBin (µi,t, sizei) (14)

where µi,t is the model-predicted output for each type of target i (e.g., case count) at each time t and sizei is the
dispersion parameter such that

probi,t = sizei/ (sizei|µi,t)

variancei,t = µi,t +
(
µ2
i,t/sizei

) (15)

per alternative parameterizations of the distribution.
We use two main algorithms to find set(s) of input parameters that cause the model’s outputs to match the cal-

ibration targets. The first is the incremental mixture importance sampling (IMIS) algorithm,28, 29 which has been
previously used to calibrate deterministic health policy models.30–32 An advantage of IMIS over other Monte Carlo
methods, such as Markov chain Monte Carlo, is that with IMIS the evaluation of the likelihood for different sampled
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parameter sets can be parallelized, which makes its implementation especially suitable for an high-performance com-
puting (HPC) environment such as the ones used for SC-COSMO calibration. The second is the Nelder-Mead (NM)
algorithm.33 This directed search approach is efficient at identifying critical points with complex models because it
is gradient-free and guarantees convergence to locally optimal solutions. To identify multiple sets of parameters that
are consistent with the calibration targets, we start the NM-based calibration from multiple random starting locations
within our prior space. For both algorithms, when we are only interested in identifying a single, best-fit parameter
set without running the sampling algorithm, we adopt a Laplace approximation where we compute the posterior mode
often called the maximum a posteriori (MAP) estimate, by maximizing the logarithm of the posterior, and use the
MAP estimate (instead of the mean) as an approximation of the parameter set θ. The inverse of the negative Hessian
of the logarithm of the posterior can be used to measure the uncertainty of this approximation.34–38 In the case of
the SC-COSMO model, we use not only the mean and hence use the calibrated posterior parameter distributions for
projections and analyses of scenarios.

3 Outcomes of interest
All the compartments in our models are variables that depend on time, t; however, we omit this index to simplify the
notation. We also omit the index, l, referring to severity levels of exposed and infectious compartments as well as
diagnosed exposed and infectious compartments.

3.1 Demographic outcomes
3.1.1 Population

The age-group-specific population, Popa, is given by

Popa = Sa +

J∑

j=1

Ej
a +

J∑

j=1

EDXj
a +

K∑

k=1

Ika +

K∑

k=1

IDXk
a +Ra, (16)

and the total population across all age groups is given by

Pop =

N∑

a=1

Popa. (17)

3.2 Epidemiological outcomes
3.2.1 Cumulative infectious individuals

The age-group-specific cumulative numbers of infectious individuals, CIa, are given by

CIa =

T∫

0

σJ
(
EJ

a + EDXJ
a

)
dt, (18)

and the total cumulative numbers of infectious individuals across all age groups is given by

CI =

T∫

0

σJ

(
N∑

a=1

(
EJ

a + EDXJ
a

)
)
dt, (19)

where T is the analytic horizon.
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3.2.2 Infectious individuals

The age-group-specific total numbers of infectious individuals at any time t, TotIa, are given by

TotIa =

K∑

k=1

(
Ika + IDXk

a

)
, (20)

and the total number of infectious individuals across all age groups is given by

TotI =

N∑

a=1

TotIa, (21)

3.2.3 Incident infectious individuals

The age-group-specific incident numbers of infectious individuals, IncIa, are given by

IncIa = σJ
(
EJ

a + EDXJ
a

)
, (22)

and the total incident infections across all age groups is given by

IncI =

N∑

a=1

IncIa. (23)

3.2.4 Cumulative diagnosed infections (regardless of infectiousness)

The age-group-specific cumulative diagnosed infections, CIDXa, are given by

CDXa =

T∫

0




J∑

j=1

((
νj + φj

)
Ej

a

)
+

K∑

k=1

((
νk + φk

)
Ika
)

 dt, (24)

and the total cumulative diagnosed infections across all age groups is given by

CDX =

T∫

0

N∑

a=1




J∑

j=1

((
νj + φj

)
Ej

a

)
+

K∑

k=1

((
νk + φk

)
Ika
)

dt, (25)

where T is the analytic horizon.

3.2.5 Diagnosed Infections (regardless of infectiousness)

The age-group-specific total numbers of diagnosed infections at any time t, DXa, are given by

DXa =

J∑

j=1

EDXj
a +

K∑

k=1

IDXk
a , (26)

and the total diagnosed infections across all age groups is given by

DX =

N∑

a=1

DXa. (27)
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3.2.6 Incident diagnosed infections (regardless of infectiousness)

The age-group-specific numbers of incident diagnosed infections, IncDXa, are given by

IncDXa =




J∑

j=1

((
νj + φj

)
Ej

a

)
+

K∑

k=1

((
νk + φk

)
Ika
)

 , (28)

and the total incident diagnosed infections across all age groups is given by

IncIDX =

N∑

a=1

IncIDXa. (29)

3.2.7 Total COVID-19 deaths

The age-group-specific total COVID-19 deaths, TotDCOV IDa, are given by

TotDCOV IDa =

T∫

0

(
pdl γK

(
IKl,a
)

+ αDX
l pdl γK

(
IDXK

l,a

))
dt, (30)

and the total cumulative COVID-19 deaths across all age groups is given by

TotDCOV ID =

T∫

0

N∑

a=1

(
pdl γK

(
IKl,a
)

+ αDX
l pdl γK

(
IDXK

l,a

))
dt, (31)

where T is the analytic horizon.

3.2.8 Known COVID-19 deaths

The known cumulative COVID-19 deaths are those observed from diagnosed infected cases only. The age-group-
specific known COVID-19 deaths, KnownDCOV IDa, are given by

KnownDCOV IDa =

T∫

0

αDX
l pdl γK

(
IDXK

l,a

)
dt, (32)

and the total known COVID-19 deaths across all age groups is given by

KnownDCOV ID =

T∫

0

N∑

a=1

αDX
l pdl γK

(
IDXK

l,a

)
dt, (33)

where T is the analytic horizon.
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